Green Phosphorescence and Electroluminescence of Sulfur Pentafluoride-Functionalized Cationic Iridium(III) Complexes.
نویسندگان
چکیده
We report on four cationic iridium(III) complexes [Ir(C^N)2(dtBubpy)](PF6) that have sulfur pentafluoride-modified 1-phenylpyrazole and 2-phenylpyridine cyclometalating (C^N) ligands (dtBubpy = 4,4'-di-tert-butyl-2,2'-bipyridyl). Three of the complexes were characterized by single-crystal X-ray structure analysis. In cyclic voltammetry, the complexes undergo reversible oxidation of iridium(III) and irreversible reduction of the SF5 group. They emit bright green phosphorescence in acetonitrile solution and in thin films at room temperature, with emission maxima in the range of 482-519 nm and photoluminescence quantum yields of up to 79%. The electron-withdrawing sulfur pentafluoride group on the cyclometalating ligands increases the oxidation potential and the redox gap and blue-shifts the phosphorescence of the iridium complexes more so than the commonly employed fluoro and trifluoromethyl groups. The irreversible reduction of the SF5 group may be a problem in organic electronics; for example, the complexes do not exhibit electroluminescence in light-emitting electrochemical cells (LEECs). Nevertheless, the complexes exhibit green to yellow-green electroluminescence in doped multilayer organic light-emitting diodes (OLEDs) with emission maxima ranging from 501 nm to 520 nm and with an external quantum efficiency (EQE) of up to 1.7% in solution-processed devices.
منابع مشابه
Cationic iridium(III) complexes for phosphorescence staining in the cytoplasm of living cells.
Two cationic iridium(III) complexes with bright green and red emissions were demonstrated as phosphorescent dyes for living cell imaging. In particular, their exclusive staining in cytoplasm, low cytotoxicity and reduced photobleaching, as well as cell membrane permeability, make the two complexes promising candidates for the design of specific bioimaging agents.
متن کاملCarborane tuning of photophysical properties of phosphorescent iridium(III) complexes.
Both neutral and cationic iridium(III) complexes containing carborane units were synthesized. Bulky carboranes can significantly improve phosphorescence quantum yields of these complexes and the electronic effect of carboranes can evidently tune emission wavelengths of cationic complexes.
متن کاملReversible piezochromic behavior of two new cationic iridium(III) complexes.
We demonstrate that two new cationic Ir(III) complexes exhibit an interesting piezochromism, and their emission color can be smartly switched by grinding and heating. This is the first example that the Ir(III) complexes display piezochromic phosphorescence.
متن کاملCationic, luminescent cyclometalated iridium(III) complexes based on substituted 2-phenylthiazole ligands.
Ten cationic heteroleptic iridium(III) complexes, [Ir(emptz)2(N^N)](PF6) were prepared from a cyclometalated iridium bridged-chloride dimer involving two ethyl-4-methylphenylthiazole-5-carboxylate (emptz) ligands. One X-ray crystallographic study was undertaken where the ancillary N^N ligand was 4,7-diphenyl-1,10-phenanthroline and revealed the anticipated structure, showing a distorted octahed...
متن کاملAggregation-induced phosphorescence of iridium(III) complexes with 2,2'-bipyridine-acylhydrazone and their highly selective recognition to Cu2+.
Two cationic cyclometallated iridium(III) complexes with 2,2'-bipyridine-acylhydrazone were synthesized and characterized by spectroscopic and photophysical measurements. They exhibit remarkable aggregation-induced phosphorescent emission (AIPE) phenomenon which is caused by the restriction of rapid isomerization of the C=N bond in the acylhydrazone moiety and are supported by TD-DFT studies. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inorganic chemistry
دوره 54 12 شماره
صفحات -
تاریخ انتشار 2015